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a b s t r a c t

A straightforward route to unsymmetrically functionalized pyrene derivatives is described involving the
synthesis of key precursor (6-bromo-3,8-dibutylpyren-1-yl)trimethylsilane 1. In a first step bromide 1
was successful in Suzuki–Miyaura, Sonogashira, and Buchwald–Hartwig cross-coupling reactions. Subse-
quent transformation of the trimethylsilyl group to bromide enabled the introduction of a second vari-
able functional group onto the pyrene skeleton.

� 2011 Elsevier Ltd. All rights reserved.

Multi-functionalization of pyrene ring is attracting significant
interest in organic materials science, because it allows manipula-
tion of the spectroscopic and opto-electronic properties of pyr-
ene.1,2 Subtle changes in structure or composition of pyrene
derivatives can greatly alter their properties as electronic organic
devices.3 Among synthetic precursors for a poly-functionalized
pyrene, a multi-brominated pyrene is one of the most valuable
building blocks on the basis of a transition-metal-catalyzed
cross-coupling strategy.3–5 For example, 1,3,6,8-tetrabromopy-
rene6 was used as a starting material of cross-coupling reactions
to synthesize symmetrical pyrene derivatives for the study of
organic electronics7 and piezochromic8 materials. 1,3-9 and 1,8-
dibromopyrene3 were also transformed into symmetrical
derivatives through Pd-catalyzed cross-coupling reactions to
develop the unique radical material10 and macrocyclic organic de-
vice.11 In addition, lithiation also works to activate multi-bromi-
nated pyrene,12 for example, 1,6-dibromopyrene was converted
into diester through dilithiation for synthesis of fluorescent bright-
ening polymer.13 In contrast to these methods of preparing sym-
metric pyrenes, there remains a great chemical difficulty in
obtaining unsymmetrically functionalized pyrenes.14

Herein, we report a systematic procedure for the synthesis of
unsymmetrically functionalized pyrene derivatives at the 1 and 6
positions (Scheme 1). First, (6-bromo-3,8-dibutylpyren-1-yl)
trimethylsilane 1 was prepared and is readily soluble in various
organic solvents. Bromide 1 was readily amenable to Suzuki–Miya-
ura, Sonogashira and Buchwald–Hartwig cross-coupling reactions.

Next, TMS group was converted to bromide and it was readily
transformed via Suzuki–Miyaura, Sonogashira and Buchwald–Har-
twig reactions. Thus, it provides a convenient access to unsymmet-
rically functionalized pyrenes.

At the outset of our study the key precursor 1 was designed
with three features in mind. The two butyl groups were included
to provide solubility in various organic solvents.15 The Br substitu-
ent is the first reactive site, and the TMS group serves as a synthon
for a second reactive Br group that can be unveiled after our first
cross-coupling. As a minor point the TMS group is also expected
to increase solubility.

The key intermediate 1 was synthesized from pyrene as shown
in Scheme 2. The reaction of pyrene with bromine in CCl4

16 gave an
isomeric mixture of 1,6- and 1,8-dibromopyrene,17 and the single
operation of recrystallization from toluene afforded 1,6-dibromop-
yrene in ca. 30% yield with >83% purity.18,19 Initial efforts to con-
vert 1,6-dibromopyrene to the corresponding 1,6-dioctylpyrene
or 1,6-didodecylpyrene proved difficult due to the numerous
amounts of n-butylated pyrene byproducts. Presumably the 1,6-
dilithiated pyrene immediately reacted with 1-bromobutane that
was produced by lithium-halogen exchange between n-BuLi and
1,6-dibromopyrene. Thus, dialkylation reaction was performed
with 1-bromobutane, and it was followed by dibromination at
the 3,8-positions, giving 1,6-dibromo-3,8-dibutylpyrene in 65%
(two steps). Lithiation of 1,6-dibromo-3,8-dibutylpyrene smoothly
proceeded with THF as an additive, and the reaction with chlorotri-
methylsilane gave 1 in 70% yield.20 According to this process, ca.
25 g of 1 was prepared in all. The direct mono-lithiation of
1,6-dibromopyrene was not successful even though the amount
of n-BuLi was controlled, presumably due to the low solubility into
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organic solvents. Compound 1 proved to be quite soluble in CHCl3,
CH2Cl2, benzene, toluene, THF, EtOAc, CH3CN, CH3CH2CN, acetone
and even hexane.21

The scope of reactivity of 1 was examined on cross-coupling
reactions, by preparing a 1-substituted (3,8-dibutylpyren-6-yl)tri-
methylsilane 2–13 (Fig. 1). The results are summarized in Table
1.22 Suzuki–Miyaura reactions (entries 1–10) were conducted with
0.5 mmol (233 mg) of 1 and 2 mL of DMF at 105 �C, in the presence
of 10 mol % Pd(PPh3)4 and 2 equiv K2CO3.23 The reactions in entries
1–6 proved to be initially very clean as confirmed by TLC. For entry
7, reaction of ortho-methoxyphenylboronic acid was sluggish pre-
sumably due to the steric hindrance,24 and the alternative catalyst
system of Pd2(dba)3 (dba = dibenzylideneacetone) and P(C6H11)3

completed the reaction in 8 h with 93% yield. For entries 8–10,
the arylboronic acids containing bromine and nitrogen were exam-
ined, and bromide 9,25 benzamide 10,26 and pyridine 11 were
obtained in 90%, 95% and 47% yield, respectively. Sonogashira
cross-coupling27 was carried out with trimethylsilylacetylene,
and compound 12 was given in 91% yield (entry 11). Buchwald–
Hartwig amination reaction with pyrrolidine10 also proceeded to
yield 13 in 70% (entry 12).

Removal of the trimethylsilyl group with Br2 was performed to
transform 2, 5, and 7 into the bromide 14, 15, and 16 (Scheme 3).
Addition of Br2 (neat) to CCl4 solution of 2 proved not to work as
confirmed by the multi spots in TLC monitoring. After several at-
tempts, Br2 as a 1 M CCl4 was found to convert 2–14 cleanly in

Figure 1. Derivatives from 1 through the cross-coupling reactions.

Table 1
Evaluation of the reactivity of 1 on cross-coupling reactionsa

Entry Product Yield (%) Timeb (h)

1 2 87 23
2 3 88 21
3 4 78 18
4 5 93 22
5 6 89 14
6 7 91 23

7c 8 97 8
8 9 90 11
9 10 95 16

10 11 47 22
11d 12 91 1
12e 13 70 15

a All reactions were performed in accordance with the representative procedure
in Ref. 22, unless otherwise stated.

b The reactions were stopped when the complete formation of Pd black was
observed and/or when the starting materials disappeared on TLC monitoring.

c The reaction was carried out in toluene at 110 �C with 5 mol % Pd2(dba)3,
15 mol % P(C6H11)3, and K3PO4 (2 equiv). dba = dibenzylideneacetone.

d Reaction at 70 �C was conducted with 1 (0.25 mmol) and TMS acetylene
(0.75 mmol) in Et3N (1.5 mL) and toluene (1.5 mL). A catalyst system of
PdCl2(PPh3)2 (0.0125 mmol) and PPh3 (0.025 mmol), and CuI (0.025 mmol) was
used.

e Reaction at 90 �C was conducted with 1 (0.25 mmol), pyrrolidine (0.75 mmol)
and NaOtBu (0.75 mmol) in toluene (2.0 mL). A catalyst system of Pd2(dba)3

(0.0125 mmol), and BINAP (0.025 mmol) was used.

Scheme 1. The outline of synthetic route to unsymmetrically substituted pyrene via 1.

Scheme 2. Synthesis of 1.

Scheme 3. Desilylation of 2, 5, and 7 with bromine.
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91% yield. Similar clean-deprotection by the addition of a 1 M CCl4

solution of Br2 were observed in 5 and 7, giving 15 in 93% yield and
16 in 87% yield, respectively.28

The reactivity of Br substituent of 14, 15, and 16 were examined
on cross-coupling reactions, by preparing unsymmetrically func-
tionalized pyrenes 17–26 (Fig. 2). The results are summarized in
Table 2. Bromide 14 smoothly cross-coupled with arylboronic acids
containing methyl ester, formyl, and pyridine groups (entries 1–3).
Compound 14 also reacted with trimetylsilylacetylene by Sono-
gashira cross-coupling in 71% yield (entry 4), and reacted with pyr-
rolidine in Buchwald–Hartwig amination in 80% yield (entry 5). For
entries 6–10, bromide 14 and 15 were also effective to Suzuki–
Miyaura and Sonogashira cross-coupling, giving 22–26 in 73–97%
yields. In particular, for entries 6 and 8, both 22 and 24 have
methyl ester group and formyl group specifically at the ortho-
and para-positions, respectively; thus, these systematic transfor-
mations using 1 achieved exact installation of functional groups
into pyrene core structure.

In summary, we have developed a systematic procedure for the
synthesis of unsymmetrically substituted pyrene derivatives. The
synthetic approach, which employs (6-bromo-3,8-dibutylpyren-
1-yl)trimethylsilane 1, accomplished to install varied functional
groups into the 1, 6-positions of the pyrene core structure, provid-
ing novel functionalized molecules 2–26. Because of the utility of
unsymmetrically functionalized pyrene derivatives, we anticipate
that this approach is likely to find widespread use in the field of or-
ganic materials science. Furthermore, this strategy should find
applications toward other substitution pyrene patterns. We will
report this work in due course.
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